Modélisation et simulation de terrains virtuels

Axel Paris Encadré par Éric Galin & Éric Guérin

Mardi 21 mars 2023

LIRIS

Contexte

Les terrains sont des objets utilisés dans de nombreux domaines

Points clés				
Réalisme	Etendue	Variété	Contrôle	

Introduction

Classification

Simulations macro-échelle

Erosion par l'eau de pluie

Stratification

Influence de la végétation

Transport de sédiments

Déposition

Notre approche

Notre approche

Introduction

Classification

Simulations macro-échelle

Classification des méthodes de génération de terrains

Introduction

Introduction

Classification

Simulations macro-échelle

Simulation de terrains à l'échelle macro

État de l'art : terrains à grande échelle

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

État de l'art : terrains à grande échelle

Modèles d'élévation : très adaptés aux terrains **à grandes échelles** Utilisé dans la **majorité** des cas d'application Compatible avec les **techniques d'érosion**

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

État de l'art : terrains à grande échelle

Techniques existantes : génération de reliefs montagneux alpins, et érosion hydraulique **Pas de solution** pour les reliefs en plaine...

Comment générer plus de variété ?

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Simulation de trajectoires de méandres

Une rivière peut prendre plusieurs formes

Introduction

Classification

Simulations macro-échelle

Une rivière peut prendre plusieurs formes

Introduction

Classification

Simulations macro-échelle

Une rivière peut prendre plusieurs formes

Introduction

Classification

Simulations macro-échelle

Une rivière peut prendre plusieurs formes

Introduction

Classification

Simulations macro-échelle

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Peu de travaux en **informatique graphique**

Très étudié en géomorphologie

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

24

[Peytavie 2019]

Vue d'ensemble

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Fondamentaux

Notion de chenal $\Gamma(t)$ avec *n* points de contrôle {**p**_k}, k \in [0, *n*[espacés régulièrement

Fondamentaux

Introduction

Notion de chenal $\Gamma(t)$ avec *n* points de contrôle {**p**_k}, k \in [0, *n*[espacés régulièrement

Taux de migration μ

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Taux de migration μ

Introduction

Taux de migration μ

Conclusion 30

Migration d'un chenal

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Migration et contrôle

Introduction

Classification

Simulations macro-échelle

Passage à l'échelle d'un réseau

Les artistes manipulent **des réseaux hydrographiques** couvrant des **dizaines de kilomètres Généralisation de la simulation** à un réseau de rivières entier

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Conclusion

Une **simulation** pour reproduire des méandres de rivière **réalistes** Des outils de contrôles **directs** et **indirects**

Comparaison visuelle

Statistiques & comparaison rivières réelles

Sinuosité par chenal Fréquence des méandres

Figures	λ/w	σ
Figure 5 [200m]	8.4	1.9
Figure 5 [100m]	14.4	3.6
Figure 5 [50m]	14.2	3.8
Figure 8	10.8	2.4
Figure 23	9.2	1.9
Observed range	[6.2, 12]	> 1.5

Simulations macro-échelle

Simulation de paysages désertiques

Simulation de paysages désertiques

Les déserts représentent 1/3 de la surface terrestre Avec des formes variées: dunes de sable, yardangs, ventifacts...

"It is still not fully clear how **wind**, blowing freely over a desert plain, fashions dunes out of sand" - J. Huggett

Végétation

Simulations macro-échelle
Simulation de paysages désertiques

Le principal agent de formation des dunes est le **vent** Différents régimes : **unidirectionnel**, des vents **complexes**...

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Vue d'ensemble

Introduction

Classification

Simulations macro-échelle

Calcul du vent à la surface

Problème : calculer le vent pour prendre en compte les obstacles du terrain

K

Approximation procédurale

Introduction

Classification

Simulations macro-échelle

Calcul du vent à la surface

Calcul du vent à la surface

Transport de sable

Introduction

Simulations macro-échelle

Abrasion

Abrasion : érosion de la couche rocheuse par l'impact du sable

Crédit : Jonathan D. Müller

Classification

Simulations macro-échelle

Abrasion

Abrasion : érosion de la couche rocheuse par l'impact du sable

Crédit : Jonathan D. Müller

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Abrasion

Abrasion : érosion de la couche rocheuse par l'impact du sable

Crédit : Jonathan D. Müller

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Conclusion

Contrôle interactif Simulation de paysages désertiques avec yardang, dune nabkha, barchan, transverse

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Conclusion

Contrôle interactif Simulation de paysages désertiques avec yardang, dune nabkha, barchan, transverse

Validation partielle de la **forme globale** et du **placement** des dunes Manque de reliefs nets : **crêtes**

> Amplification procédurale [Génevaux 2015]

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Modélisation et génération de terrains volumiques

État de l'art : modèles de terrain volumique

Fonction de matériau volumique $v : \mathbb{R}^3 \to \mathbb{N}$ Peut représenter **arches, surplombs, grottes**

État de l'art : génération de terrains volumiques

[Beardall 2007] [Jones 2010] Edition

[Peytavie 2009] [Becher 2018]

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

État de l'art : génération de terrains volumiques

Edition

[Beardall 2007] [Jones 2010] [Peytavie 2009] [Becher 2018]

Comment gérer les **grands domaines** ? Comment **générer** certaines formes caractéristiques ?

Introduction

Classification

Simulations macro-échelle

Modèle de surface implicite

Modèle de surface implicite

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion 54

Fonctions de distance signées 1-Lipschitziennes

Introduction

Simulations macro-échelle

Fonctions de distance signées 1-Lipschitziennes

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Fonctions de distance signées 1-Lipschitziennes

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Inspiration du Blob Tree [Wyvill 1998]

Prin	mitives	a squelette	•	Opérateurs					
Boîte Sp	hère	Cylindre	Courbe	CSG	CSG Lisse	Warping	Transformations		

Simulations macro-échelle

Inspiration du Blob Tree [Wyvill 1998]

Primiti	ves à squelett	e		Opérateurs					
Boîte Sphère	Cylindre	Courbe	CSG	CSG Lisse	Warping	Transformations			

Objectifs Modéliser des **terrains volumiques** avec des **SDF** par **arbres de construction**

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Inspiration du Blob Tree [Wyvill 1998]

Primitives à squelette					Opérateurs					
Boîte	Sphère	Cylindre	Courbe		CSG	CSG Lisse	Warping	Transformations		

Objectifs

Modéliser des terrains volumiques avec des SDF par arbres de construction

Comment adapter les modèles d'élévation à un contexte volumique ?

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Inspiration du Blob Tree [Wyvill 1998]

Primitives à squelette				Opérateurs					
Boîte Sp	phère	Cylindre	Courbe	CSG	CSG Lisse	Warping	Transformations		

Objectifs

Modéliser des terrains volumiques avec des SDF par arbres de construction

Comment adapter les **modèles d'élévation** à un contexte volumique ? Comment **générer** des reliefs volumiques ?

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Modélisation volumique : modèles d'élévation

Primitive volumique à partir d'une fonction d'élévation $h : \mathbb{R}^2 \to \mathbb{R}$

Modélisation volumique : modèles d'élévation

Primitive volumique à partir d'une fonction d'élévation $h : \mathbb{R}^2 \to \mathbb{R}$

Introduction

Classification

Simulations macro-échelle

Génération de reliefs volumiques : échelles

Problème : génération d'une **variété** de formes volumiques

Génération de reliefs volumiques : échelles

Problème : génération d'une variété de formes volumiques

Distinction en différentes échelles géologiques

Micro (quelques mètres)

Détails de falaise

Méso (quelques dizaines de mètres)

Arches, surplombs

Macro (> 50m)

Réseaux karstiques profonds

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Génération de reliefs volumiques : échelles

Problème : génération d'une variété de formes volumiques

Distinction en différentes échelles géologiques

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Génération de reliefs méso-échelle

Génération de reliefs méso-échelle

Problème : générer des reliefs volumiques à méso-échelle

Arches, surplombs, – falaises karstiques

Introduction

Simulations macro-échelle

Modélisation volumique

Génération de reliefs méso-échelle

Introduction

Classification

Simulations macro-échelle

Génération de reliefs méso-échelle

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Modèle volumique de perméabilité

Problème : caractériser la **perméabilité 3D Fonction** de perméabilité $\rho : \mathbb{R}^3 \to \mathbb{R}$

Attention, ce n'est pas la fonction f du terrain

Introduction

Simulations macro-échelle

Modélisation volumique

Modèle volumique de perméabilité

Problème : caractériser la **perméabilité 3D Fonction** de perméabilité $\rho : \mathbb{R}^3 \to \mathbb{R}$

Attention, ce n'est pas la fonction f du terrain

Introduction

Classification

Simulations macro-échelle

Modélisation volumique
Modèle volumique de perméabilité

Problème : caractériser la **perméabilité 3D Fonction** de perméabilité $\rho : \mathbb{R}^3 \to \mathbb{R}$

Attention, ce n'est pas la fonction f du terrain

Introduction

Classification

Simulations macro-échelle

Hoodoos par grammaires de formes ouvertes

Processus de **croissance** par grammaire de formes Symboles terminaux : **primitives à squelette**

Règles de grammaire

Symboles terminaux

Simulations macro-échelle

Hoodoos par grammaires de formes ouvertes

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Erosion par invasion-percolation

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Primitive courbe

Primitives d'érosion sphériques Zone très **perméable**

Falaises karstiques

to allow the same allines and in the share shill the same all the same and a share share shill be shown in the same shill be shown in the same shift be shif

Pas de travaux en informatique graphique

Introduction

Classification

Simulations macro-échelle

Problème : générer des réseaux karstiques réalistes à grande échelle

Problème : générer des réseaux karstiques réalistes à grande échelle

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Problème : générer des réseaux karstiques réalistes à grande échelle

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Problème : générer des réseaux karstiques réalistes à grande échelle

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Problème : générer des réseaux karstiques réalistes à grande échelle

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Fonction de coût géologique

Introduction

Fonction de coût géologique

Introduction

Simulations macro-échelle

Fonction de coût géologique

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

Objectif : calculer le squelette karstique S à partir des points clés P, avec une métrique anisotrope

Objectif : calculer le squelette karstique S à partir des points clés P, avec une métrique anisotrope

Graphe complet des chemins

Introduction

Simulations macro-échelle

Objectif : calculer le squelette karstique S à partir des points clés P, avec une métrique anisotrope

Introduction

Variété de réseaux karstiques

Introduction

Classification

Simulations macro-échelle

Synthèse de la géométrie des tunnels

Problème : synthèse de la géométrie détaillée des tunnels Primitive implicite pour une **courbe 3D** avec des **profils asymétriques**

Synthèse de la géométrie des tunnels

Introduction

Simulations macro-échelle

Synthèse de la géométrie des tunnels

Validation et comparaison

Comparaison avec des réseaux karstiques réels [Collon 2017]

Classification

Simulations macro-échelle

Modélisation volumique

Validation et comparaison

Comparaison avec des réseaux karstiques réels [Collon 2017]

Classification

Simulations macro-échelle

Modélisation volumique

Conclusion

I)

Interface entre Informatique Graphique et Géomorphologie

Introduction

Simulations macro-échelle

Modélisation volumique

Conclusion

I)

Interface entre Informatique Graphique et Géomorphologie

II) Modélisation implicite pour les terrains volumiques

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Simulation de phénomènes macro-échelle de terrains

Simulation sur grille [Murray 1994] Equation shallow-water [Sun 2015]

Introduction

Simulations macro-échelle

Simulation de phénomènes macro-échelle de terrains

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Simulation de phénomènes macro-échelle de terrains

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Objectif : étendre le modèle implicite avec des formes volumiques depuis des **données réelles**

Scan LiDAR

Introduction

Classification

Simulations macro-échelle

Modélisation volumique

Modélisation et simulation de terrains virtuels

Axel Paris Encadré par Éric Galin & Éric Guérin

Mardi 21 mars 2023

LIRIS

Bonus slides
Méandres: évènements ponctuels

Cutoff Auto-intersection d'un bras de rivière Processus **fondamental** pour la formation de méandres

Avulsion

Changement de trajectoire drastique et soudain Abandon **complet** de l'ancienne trajectoire

Déclenchés par l'utilisateur ou stochastiquement

Déserts : phénomène d'ombrage du vent

Processus **essentiel** pour la formation des dunes Angle d'ombrage du vent 15°

Modélisation implicite : opérateur d'union lisse

Modélisation implicite : meshing de terrains

Nos reliefs 3D sont **sparses** Grille de meshing **élaguée**

Modélisation implicite : primitives à squelette détaillées

Problème : bulles d'intensité flottantes si on ajoute du bruit **Solution :** Calculer le bruit à la **surface du squelette** et modifier le **rayon**

Karsts : génération du réseau par γ -squelettes

Le paramètre γ contrôle la taille du voisinage entre deux points (**a**, **b**)

Karsts : primitives de tunnel

Reliefs de falaise

Reliefs de falaise

Reliefs de falaise : processus de fracturation

Reliefs de falaise : opérateur de déformation basé gradient

Reliefs de falaise : variété géologiques

Reliefs de falaise : amplification

