
Sphere Carving: Bounding Volumes for Signed Distance Fields

HUGO SCHOTT, Adobe, INSA Lyon, CNRS, LIRIS, UMR5205

THEO THONAT, Adobe
THIBAUD LAMBERT, Adobe
ERIC GUÉRIN, INSA Lyon, CNRS, LIRIS, UMR5205

ERIC GALIN, Université Claude Bernard Lyon 1, CNRS, LIRIS, UMR5205

AXEL PARIS, Adobe

Sphere

Carving

Carved volume

Unique

Convex

Bound

Signed Distance

Field Initial volume 𝑉0
Multiple

components

Multiple types

of bound

Computing

Point cloud P

Fig. 1. Given an input black box conservative signed distance field, we automatically generate a convex bounding volume around the implicitly defined object,
agnostic of its representation. Starting from a large initial volume around the object, we iteratively carve the space using spheres defined by the signed distance
field. The bounding volume is then constructed as a single or multiple convex primitives (half-spaces, ellipsoids) and allows for faster field function queries.

We introduce Sphere Carving, a novel method for automatically computing
bounding volumes that closely bound a procedurally de�ned implicit surface.
Starting from an initial bounding volume located far from the object, we
iteratively approach the surface by leveraging the signed distance function
information. Field function queries de�ne a set of empty spheres, from
which we extract intersection points that are used to compute a bounding
volume. Our method is agnostic of the function representation and only
requires a conservative signed distance �eld as input. This encompasses
a large set of procedurally de�ned implicit surface models such as exact
or Lipschitz functions, BlobTrees, or even neural representations. Sphere
Carving is conceptually simple, independent of the function representation,
requires a small number of function queries to create bounding volumes,
and accelerates queries in Sphere Tracing and polygonization.

CCS Concepts: • Computer systems organization → Embedded sys-

tems; Redundancy; Robotics; • Networks → Network reliability;

Additional Key Words and Phrases: Implicit surfaces, Signed Distance Fields,

Bounding Volumes

ACM Reference format:

Hugo Schott, Theo Thonat, Thibaud Lambert, Eric Guérin, Eric Galin, andAxel
Paris. 2025. Sphere Carving: Bounding Volumes for Signed Distance Fields.
ACM Trans. Graph. 1, 1, Article 1 (May 2025), 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Implicit surfaces [Bloomenthal andWyvill 1997] form a compact and
e�cient representation for modeling volumetric objects, and have
demonstrated their e�ectiveness in constructive solid geometry,
�uid simulation, rendering, or surface reconstruction. Unlike explicit
representations such as point clouds, surface meshes, or voxels
which rely on a discretization of space, an implicit representation
indirectly de�nes an object as the zero level-set mO = {p, 5 (p) = 0}

of a function 5 , often referred to as a potential �eld. In this article,
we address implicit surfaces for which their function is also a lower
bound of the distance to the surface, referred to in this paper as
signed distance �elds.
As objects become increasingly complex, the mathematical or

procedural expression of the function can become computationally
expensive, hindering the ability to create and edit complex scenes
interactively. A well-established technique for optimizing queries
involves using bounding volume hierarchies [Gourmel et al. 2010;
Wyvill et al. 1999]. These are usually de�ned using simple geometric
shapes and allow quickly discarding large portions of space to save
computations. While the computation of the bounding volumes
has been thoroughly investigated for implicit surfaces built from
construction trees [Wyvill et al. 1999], the problem is challenging for
general implicit surfaces, agnostic of their underlying representation.
Moreover, we aim to automatically compute a lightweight bounding
volume hierarchy whose representation may be incorporated in the
function de�nition itself.

In this work, we present a method for computing such bounding
volumes called Sphere Carving. We conceptualize space as an in�nite
block of rock, which we initially reduce to a large but �nite region
that encloses the object (see Figure 1). Similar to sculpting, we
remove sections of rock to gradually reveal the underlying shape.
We iteratively and progressively carve this rock by removing parts
of spheres without damaging the object, using the empty sphere
criterion de�ned by conservative signed distance �elds. At the end
of this process, we obtain a tight volumeV that closely envelopes
the object’s surface (Figure 2). We convertV into a bounding proxy
signed distance function that is less expensive to evaluate than the
original function 5 . This lightweight approach is simpler than an

https://doi.org/10.1145/nnnnnnn.nnnnnnn

model 𝑛𝑖 = 1 𝑛𝑖 = 2 𝑛𝑖 = 3 𝑛𝑖 = 4 𝑛𝑖 = 5 𝑛𝑖 = 8 𝑛𝑖 = 15
Fig. 2. Visualization of the spheres carving the initial volume through several
iterations of Sphere Carving. The carved volume o�en approaches the model
even for complex geometric shapes with a non-zero genus and several
components.

external acceleration structure, such as a grid or an octree [Hart
1996].

The construction of the bounding volumes requires a small num-
ber of �eld function queries #5 , from a few thousand for complex
objects to less than one hundred for an exact signed distance �eld.
The algorithm operates for a large class of implicit surfaces: the
only requirement is that the function 5 should be conservative. This
allows us to perform faster queries in a large portion of space, which
is typically useful for Sphere Tracing or polygonization algorithms.
Moreover, our method produces a lightweight hierarchy of convex
volumes, which can be directly used to generate a modi�ed function
5̃ with accelerated �eld function queries.
Our contributions are as follows: 1) We introduce a novel and

robust method to calculate a bounding volume given a conservative
input signed distance �eld. 2) We propose a method for creating a
lightweight hierarchy of convex volumes, whose representation can
be incorporated into the function de�nition, resulting in small com-
putational overhead. To the best of our knowledge, this method is
the �rst to compute bounding volumes agnostic of the construction
of the function 5 .

2 RELATED WORK

This related work focuses on techniques designed to accelerate
queries on implicit surfaces. Regardless of the underlying represen-
tation, complex algorithms – such as surface normal evaluation,
polygonization, or ray-surface intersection – ultimately rely on
one fundamental query: evaluating the �eld function 5 (p) at a spe-
ci�c position p. Therefore, previously published methods either aim
to reduce the number of �eld function calls #5 or to decrease the
computational cost of evaluating 5 (p).
Implicit surfaces can be classi�ed into three categories: discrete,

procedural, and neural. Discrete models de�ne the signed distance
function through the interpolation of discrete samples, typically
organized in a regular or adaptive grid [Frisken et al. 2000] or in a
narrow band structure [Museth et al. 2002]. Neural implicit surfaces
represent the �eld function as a neural network, allowing to encode
arbitrary input shapes as implicit surfaces [Coi�er and Béthune
2024; Park et al. 2019; Sharp and Jacobson 2022]. Procedural implicit
surfaces combine closed-form mathematical equations [Pasko et al.
1995] or utilize trees or graphs that combine various primitives and
operators [Blinn 1982; Riso et al. 2024; Wyvill et al. 1999, 1986].
However, querying the �eld function can become computationally
intensive as the complexity of the shapes increases.

Reducing the number of function calls #5 , i.e. the complexity, is
a general strategy for improving performance that depends on the
considered algorithm. Methods for processing implicit surfaces take
advantage of the properties of the signed distance function 5 and
the coherency of the queries 5 (p) to reduce the number of function
calls and accelerate algorithms. This is typically the case for opti-
mizing ray-surface intersection algorithms through Lipschitz-based
algorithms [Kalra and Barr 1989] such as Sphere Tracing [Bán and
Valasek 2023; Bálint and Valasek 2018; Hart 1996], Segment Tracing
[Galin et al. 2020], or second-order approximation of the signed
distance function along the ray [Aydinlilar and Zanni 2023]. Those
approaches need to evaluate a global or a local Lipschitz bound. This
is also the case for grid-based polygonization algorithms that adopt
a continuation [Wyvill et al. 1986] or a sweeping strategy [Lorensen
and Cline 1987] to reuse signed distance function queries at the
vertexes of a virtual grid. A complete analysis of polygonization
techniques is beyond the scope of this paper and may be found in
Araujo et al.[2015].

Reducing the computational cost of 5 (p), which may be regarded
as a low-level optimization, plays a crucial role in accelerating pro-
cesses such as ray-object intersection, polygonization, and collision
detection. Caching distance data [Schmidt et al. 2005] can be e�ec-
tive but limited in its application because of the increasing memory
usage. Local piecewise approximation of the �eld function in a grid
or an octree [Pujol and Chica 2023] su�ers from the same limitation.
Simplifying the function expression is another method to improve
computational e�ciency. Screen-space pruning of BlobTrees [Zanni
2024] relies on the ability to bound the in�uence of primitives and
operators in space but may require costly pre-processing steps. In-
terval arithmetic [Aydinlilar and Zanni 2023; Keeter 2020] may also
be used to eliminate parts of the expression that do not contribute
signi�cantly in regions of space, but requires all primitives and
operators to de�ne additional speci�c queries.
Finally, acceleration techniques usually rely on additional data

structures embedded or external to the representation of the implicit
object. Somemodels built from compactly supported primitives such
as Blobs [Wyvill et al. 1986] or particularly the BlobTree [Wyvill
et al. 1999], contain a bounding volume hierarchy in their construc-
tion trees. In contrast, other models including procedurally de�ned
signed distance �elds do not bene�t from the compact support
property of their primitives and operators. External accompanying
acceleration structures, usually bounding box hierarchies [Gourmel
et al. 2010] or octrees [Galin et al. 2020; Hart 1996] may be used to
eliminate empty regions on space, store additional data such as a
local Lipschitz bound, or a computationally e�cient local approxi-
mation of the function [Pujol and Chica 2023]. Such acceleration
structures usually require a possibly intensive preprocessing step,
signi�cantly increase memory requirements, and are often model-
speci�c. This is particularly the case for interval arithmetic-based
approaches that require the closed-form expression of nodes [Ay-
dinlilar and Zanni 2023; Keeter 2020] or Lipschitz techniques [Galin
et al. 2020] that need speci�c knowledge for every primitive and
operator in the construction tree.

Recent results in implicit modeling [Sellán et al. 2023, 2024] utilize
the �eld function value 5 (p) to de�ne empty spheres in space and
provide e�cient polygonization. Our method draws inspiration

Convex Bounding Volumes

Input function

Volume 𝑉0

𝑓(𝐩)

Sphere set 𝑆

Sphere Carving

Sphere Set 𝑆𝑖
Convex 𝐻

Convex 𝐻𝑖
Point Set 𝑃𝑖𝑓(𝐩𝑖) 𝑇(𝑆)

ACD

Points and Spheres

Point set 𝑃
Bounding volumes

Volume

Output

Function ሚ𝑓
𝑓(𝐩)

𝑑(𝐩, __)
Object

Fig. 3. Given a conservative signed distance function 5 and a volume V0, Sphere Carving progressively carves spheres S around the object while maintaining
a point set P defined as the trilateration of S. Next, we construct bounding volumes fi�ing the object using an approximate convex decomposition algorithm
over P. The resulting set of convex shapes is then used to define an accelerated function 5̃ .

from this approach by using empty spheres to quickly carve out
space around the object. This process leads to a point set that is
close to the surface and can be used to obtain a bounding volume
with few queries.

3 OVERVIEW AND NOTATIONS

3.1 Fundamentals concepts

An implicit surface mO is de�ned as the 0-level set of a function
5 : R3 → R:

mO = {p ∈ R3, 5 (p) = 0}

We consider the subset of implicit surfaces called signed distance
�elds, where the function 5 computes a geometric distance to the
object’s surface, with positive distance values outside and negative
values inside. We distinguish between the following di�erent fami-
lies: exact, Lipschitz, and conservative (Figure 4). Functions that do
not �t these categories belong to the general class of scalar functions
on which we cannot make assumptions.

𝐩
Exact

1-Lipschitz

Conservative

𝐩
|𝑓 𝐩 | = 𝑑 𝐩, 𝜕𝑂 |𝑓 𝐩 | ≤ 𝑑 𝐩, 𝜕𝑂

𝑓 𝐩 − 𝑓(𝐪) ≤ 𝜆| 𝐩 − 𝐪 |
or

𝜕𝑂 𝜕𝑂

Fig. 4. Di�erent classes of signed distance field, grey lines depict iso-
potential level sets. A key observation is that the empty sphere ((p, | 5 (p) |)
is tangent to mO in the case of exact signed distance fields.

Exact signed distance functions compute the Euclidean distance
3 to the surface: ∀p ∈ R3, |5 (p) | = 3 (p, mO). Consequently, a sphere
centered at any point p of radius |5 (p) | is always tangent to the sur-
face of O. Lipschitz functions admit a Lipschitz bound _. Recall that
a function 5 is Lipschitz if and only if there is a positive constant _
such that: ∀(p, q) ∈ R3 × R3, |5 (p) − 5 (q) | ≤ _∥p − q∥. Conserva-
tive functions de�ne a possibly not continuous lower bound for the
distance to the surface. This means that ∀p ∈ R3, |5 (p) | ≤ 3 (p, mO).
They form a more general class than Lipschitz and their exact coun-
terparts.
Although exact signed distance �elds exist for some geometric

primitives (sphere, box), this is no longer true when using some

Boolean operators (union, intersection, di�erence) or any smooth op-
erators (smooth union, etc.). At best, 5 may be almost exact, meaning
that the distance to the object’s surface may be slightly underesti-
mated. Sphere Carving is general and only requires the function to
be a conservative signed distance �eld. In that case, the fundamen-
tal empty-sphere criterion is veri�ed. Let ((c, A) denote the sphere
centered at c of radius A , we have:

∀p ∈ R3 ((p, |5 (p) |) ∩ mO = ∅

When there is no ambiguity, we denote ((p) the empty sphere
((p, |5 (p) |).

3.2 Overview

Starting from an object O de�ned by a (black box) signed distance
function 5 , we aim at computing a bounding volume using only the
distance information (Figure 3). We start from an initial large bound-
ing volume V0 (Section 4.1) enclosing the object and iteratively
carve a volumeV around O, while guaranteeing never to intersect
it. As an analogy to sphere tracing, which computes an intersection
with the surface by iteratively discarding empty segments along a
ray, Sphere Carving computes a bounding volume of the surface by
iteratively carving empty spheres in space. At every iteration, we
compute a set of empty spheres S: that de�nes the carved volume
as V: = V0\S: . From this sphere set S: , we manage to �nd a
set of interesting points P: on the surface of V: , by computing
and selecting the relevant 3-spheres intersections of S: . The set
of spheres is then augmented (Section 4.2) by querying 5 on those
points S:+1 = S: ∪ {((p, 5 (p)) | p ∈ P: }.
The process of Sphere Carving usually converges to a volume
V in less than 20 iterations (depending on how conservative 5 is)
and gives a �nal set of points P close to the surface mO that we
exploit to build one or several bounding volumesB of di�erent types
(Section 5). Let� (P) denote the geometric convex hull of a point set
P, we exploit the property � (P:) ⊇ O, which is always satis�ed
for the point set P: , to generate convex bounding volumes around
O. The construction of those bounding volumes only exploits the
information given by the Sphere Carving (i.e. S and P) and never
requires supplementary queries of 5 .

Ultimately, the bounding volumeB is used to build a conservative
variant 5̃ whose �eld function queries are de�ned as the distance to
its bounding volume 3 (p,B) if p lies outside of B, and 5 otherwise,
formally:

5̃ (p) = 3 (p,B) if 3 (p,B) > Y, 5̃ (p) = 5 (p) otherwise.

 𝐩 ሚ𝑓(𝐩) = 𝑓(𝐩)ሚ𝑓(𝐪) = 𝑑 𝐪,𝑉𝐪
B

Fig. 5. Construction of the conservative signed distance function 5̃ .

The Y > 0 constant is important and guarantees that the 0-level set
of 5̃ is the same as 5 (see Figure 5). We �xed Y = 0.01 in all our
experiments. This variant is constructed as a conservative signed
distance function and provides fast queries of the �eld function
whenever p is outside of B.

Algorithm 1: Sphere Carving.

Input :Conservative signed distance �eld 5 , initial large
volumeV0, distance threshold g > 0.

Result: Set of empty spheres S, point set P whose convex
hull bounds the surface de�ned by 5 .

1 P ← sample surface(V0); // Section 4.1

2 S ← { sphere(p, 5 (p)) | p ∈ P };

3 while max(5 (P)) > g do

4 P ← intersections(sphere triplets(S));

5 P ← P \ interior(S); // Keep boundary points

6 S ← S ∪ { sphere(p, 5 (p)) | p ∈ P , 5 (p) > g };

7 end

8 return (,P

4 SPHERE CARVING

At every step : of the algorithm (see Algorithm 1), we compute a set
of carving spheres S: and its corresponding point set P: . For the
next iteration : + 1 and to continue carving, we need to place new
spheres located on the surface ofV: = V0\S: . Thus, we need to
build a set P: of points onV: . While this may be done in various
ways, we compute P: as all the 3-spheres intersections) on the set
of spheres S: (i.e., a trilateration, see Appendix A.2), and select the
points on the surface ofV: (i.e., the points outside of the spheres).
Placing new points on 3-sphere intersections (see Figure 8) ensures
the convergence of the process: placing a sphere on an intersection
will always create new intersections for the next step, and therefore
new empty spheres that decrease the carved volume. Although the
process is not guaranteed to converge towards the exact shape O, it
has always been the case in our experiments.

Let m(denote the surface of the sphere, (the ball whose boundary
is m(, and interior(S:) the interior of the volume de�ned by the
sphere set, we have:

) (S:) = {m(0 ∩ m(1 ∩ m(2 , ((0, (1 , (2) ∈ S
3
:
}

P: =)̃ (S:) =) (S:)\interior(S:)

In practice, every 3-sphere intersection (0∩(1 ∩(2 is checked for
inclusion in the spheres of the complementary set {(8 , 8 ∉ {0, 1, 2}}.

The setsS: andP: satisfy two important properties (see Figure 6)
that constitute the foundations of the method.

𝑘
𝑘

𝐻 𝑘
𝜕

S P

P

Fig. 6. Notations and properties: the set of points P: is computed by tri-

lateration from the sphere set S: and the object remains inside the convex
hull (even when all points do not lie on the convex hull): O ⊂ � (P:) .

Property 1. The sphere set S: is outside the object O de�ned by
the function 5 :

S: ∩ O = ∅ ⇔ ∀p ∈ S: , 5 (p) > 0

This comes from the construction of the sphere set: the initial points
on V0 are outside O, and all carving spheres satisfy the empty-
sphere criterion. The intersection points of carving spheres are
necessarily outside O. Consequently, the new spheres built from
the set P do not intersect O. This ensures that at every iteration,
we cannot intersect the object of interest (Section 4.2).

Property 2. The convex hull � (P:) of the point set P: is bound-
ing the object O:

O ⊂ � (P:) ⇔ ∀p ∉ � (P:), 5 (p) > 0

This second property comes from the observation that the convex
hull of the intersection points� (P) always lies inside the sphere set
(see Figure 6) , which is empty from the previous property. Therefore,
no part of the object O will intersect the convex hull � (P). Thus,
the bounding volumes that we construct are guaranteed to strictly
contain the object of interest, a property that we use in Section 5.

4.1 Initialization

For the carving process to e�ectively produce a valid bounding vol-
ume of O, its initialization needs to meet some simple yet important
essential constraints.

As mentioned earlier, the carving starts from an already bounding
region of spaceV0, that can be taken as large as needed, provided
that 5 is well-de�ned in that volume. Points are sampled on its
surface and used to produce the �rst sphere set S0 by evaluating
5 . As illustrated in Figure 7, to provide a valid initialization, this
sphere set has to cover the entire surface ofV0.

In practice,V0 is chosen as a large icosphere (a recursively sub-
divided icosahedron), for two main purposes: 1) the sampling is
straightforward as we can use the vertexes of the icosphere, and 2)
the coverage constraint ofV0 can be checked per triangle △(a, b, c),
using only the spheres of its three vertexes (see Appendix A.1 and
Figure 25):

∀△(a, b, c) ∈ V0, △(a, b, c) ⊂ ((a) ∪ ((b) ∪ ((c)

The subdivision level of the icosphere can then be adapted to the
coverage criterion if needed. At the end of the process, we get an

𝜕 0 𝜕
0𝜕 \ 0

Fig. 7. Synthetic illustration of valid (le�) and invalid (right) initial sphere
set S0 for an initial sphere volume V0.

initial carved volume V0\S0 and a point set P0. This icosphere
sampling strategy is bene�cial, as our coverage constraint is ex-
pressed per triangle. Other strategies may be used as long as this
constraint is ful�lled.

𝜕 𝜕 𝑘

Iteration k Iteration k+1

𝑘+1

𝑘 𝑘+1

Fig. 8. Overview of the iterative process: the sphere set S progressively
carves V0 towards the object at every iteration.

4.2 Iteration

The Sphere Carving algorithm consists in progressively carving new
spheres from the volumeV0 to approach the object O. We consider
the system at iteration : , with the sphere set S: and the associated
point set P: . We iteratively de�ne the new set of spheres S:+1 by
adding new spheres located at the intersection points in P: and
with a radius de�ned by the signed distance function 5 evaluated at
their centers:

S:+1 = S: ∪ {((p, 5 (p)) | p ∈ P: }

The point set is updated to contain the valid intersections of the
new sphere set by trilateration. Figure 8 illustrates how the series of
point sets P: progress toward the shape at each iteration.
The computation of the valid intersection points of the sphere

set S:+1 is performed as follows. We compute the trilateration for
the combination of all sphere triplets of S: , and only keep the
intersections that do not belong to the set of previously computed
carved spheres: P: =)̃ (S:).

The carved volumeV0\S:+1 always contains the object O, while
diminishing at every iteration. Figures 2 and 9 show its evolution
at di�erent iterations for one model, while Figure 10 shows three
converged carved volumes, for various models.
The overall process requires a small number of �eld function

evaluations. The most demanding part of the algorithm comes from
evaluating every possible triplet of sphere intersections within the
sphere set. Using an acceleration data structure may reduce this oth-
erwise computationally intensive step, as discussed in Section 6.4.

= 12
= 156 # = 1290

Fig. 9. Visualization of the carved volume V0\S: with : carving iterations
for the dinosaur model, here : ∈ {1, 4, 7}. The first set of spheres is still far
from mO, showing that the function is not exact but conservative.

= 1771 # = 515 # = 734
Fig. 10. Visualization of the final carved volume V0\S for three models: a
tie-fighter, a temple, and a snail.

4.3 Termination criterion

Sphere Carving involves only a few parameters: the size of the ini-
tial volume, denoted asV0, which is usually taken as large as the
computation precision can allow (in practice, we take it two orders
of magnitude larger than the object) and the distance threshold for
the spheres, denoted as g (set to 0.1 in our experiments). This last
parameter serves as the primary stopping criterion for the algorithm.
The algorithm will terminate if no new sphere is added during a
given iteration, meaning that every point p in P satis�es 5 (p) < g .
The value of g is in�uenced by the overall quality of the signed
distance function, which is discussed in Section 6.1. In practice, the
complexity of the sphere intersection routine is $ (=3) and it is pos-
sible to impose a maximum number of spheres or limit the number
of iterations.

5 BOUNDING SHAPES

The Sphere Carving algorithm produces a �nal sphere set S and
its associated set of points P. Recall that the convex hull of P is
bounding the object (Property 2) and may thus be exploited in
di�erent ways to build e�cient bounding volumes.
We compute the bounding volume B from the sphere set S as

a set of convex polyhedraH or a set of ellipsoids E. Recall that 5̃
is de�ned as the distance to its bounding volume 3 (p,B) if p lies
outside of B, and 5 otherwise:

5̃ = 3 (p,B) if 3 (p,B) > Y, 5̃ = 5 (p) otherwise

Here we address the construction of 3 (p,B).

5.1 Implicit convex hulls

The convex hull H = � (P=) is de�ned as the intersection of a
set of oriented half-spaces {Π8 } characterized by a point c8 and
their normal n8 , corresponding to the faces of the polyhedron. A
corresponding conservative signed distance function (di�erent from

Π
H(P)

S ΠΠ
L

H(L)

H(R)

S
R

Fig. 11. The convex hull � (P) of the set of points P is cut by a partitioning half-space Π. We approximate Π by two large-radius spheres, (L and (R to
create two subsets of points: L and R. We then add the intersections of the cu�ing sphere with the set of spheres S to these two subsets.

the Euclidean distance �eld) may be de�ned as:

3 (p,H) = max
8

3 (Π8 , p) 3 (Π8 , p) = (p − c8) · n8

The convex hulls often hold several hundreds of half-spaces, mak-
ing the corresponding signed distance �eld computationally inten-
sive. However, its cost should always remain negligible compared
to the cost of the function 5 de�ning the object. Therefore, we sim-
plify the set of plane H to a more manageable one H̃ while still
preserving a convex bound.

= 768 # = 20 # = 10

Fig. 12. Simplified convex bounding volumes: one with full resolution with
768 half-spaces, and simplified versions using only 20 and 10 planes. With
≈ 20 half-spaces, the shape of the convex hull is almost equivalent to the full
resolution, while the evaluation of 3 (p, H̃) is significantly more e�icient.

Our approach comes from the observation that removing a half-
spaceΠ8 from the setH does not break the bounding property of the
hull: removing a plane only adds volume to the convex shape. There-
fore, selecting the most relevant half-spaces from the setH is an
e�ective way to simplify the hull. We apply a k-means algorithm
to the set of half-spacesH , searching for< clusters and only con-
sidering their orientations n8 . After convergence, we project the
resulting clusters onto the existing half-spaces to get a reduced set
H̃ which continues to bound the object and o�ers a more e�cient
evaluation of the distance 3 (p, H̃). The parameter < serves as a
trade-o� between the accuracy of the bound (where higher values of
< yield a better approximation of the convex hull) and the e�ciency
of the distance query.
Figure 12 illustrates various simpli�cations of an initial convex

hull at full resolution (768 half-spaces) alongside simpli�ed versions
featuring 20 and 10 half-spaces. Notably, signi�cantly reducing<
does not adversely a�ect the quality of H̃ . Figure 13 shows the
volume of H̃ as a function of the number of half-spaces<, averaged
for 17 di�erent objects. In our implementation, we set< ≈ 20.

5.2 Approximate Convex Decomposition

Extracting a single bounding volume does not fully utilize the in-
formation produced by the Sphere Carving algorithm. The point

1,5

1,0

1,25

10 20 30 40 50 60 70

Volume ratio ෩𝐻 𝑛 /__ 𝑛

Fig. 13. Average and span of ratio of volumes H̃/H as a function of<.

set P contains more information than just its convex hull, as it
conforms more closely to the shape (see �nal carved volumes in
Figures 2, 9 and 10). Using a straightforward approximate convex
decomposition algorithm, we show that this additional information
can be leveraged to de�ne a tighter volume as a union of simpler
shapes.

Cutting plane selection

𝜕
H(P)

Convex hull decomposition

Π
𝜕

Fig. 14. From the point set P produced by Sphere Carving, we sample
candidate cu�ing planes Π, compute their respective scores, and select the
candidate minimizing the volume of the set of new hulls f (P,Π) (le�,
green).

The approximate convex decomposition method [Thul et al. 2018]
(see Figure 14) recursively cuts the point set P into a user-de�ned
number of parts along carefully selected cutting planes. This process
does not require further evaluations of the signed distance function
5 , as we only utilize the sphere set S and its corresponding point
set P. Below, we explain how to select the cutting planes and split
each part.
Choosing an e�ective cutting plane is crucial for any convex

decomposition process. To do so, we need a relevant metric that
evaluates the relative quality of various cutting planes. When it
comes to accelerating �eld function queries 5 using bounding vol-
umes, the goal is to achieve the tightest possible bounding volume.
Let L and R denote the two disjoint subsets of P, separated by a
plane Π:

L = {p ∈ P, 3 (Π, p) < 0} R = {p ∈ P, 3 (Π, p) ≥ 0}

We apply the following straightforward score function f to the
subdivided point set (with + the volume function):

f (P,Π) = + (� (L)) ++ (� (R))

Exploring the space of cutting planes can rapidly become expen-
sive and is not of paramount importance compared to the implied
associated cost. Therefore, we only sample a few hundreds planes
{Π8 }, and choose the cutting plane Π as follows:

Π = argmin
8

f (P,Π8)

Although simply taking the convex hull of the split point sets L
and R is not su�cient to guarantee the bounding property of those
hulls, formally: O ⊄ � (L) ∪ � (R). Instead, we must compute the
intersections of the cutting plane Π with the sphere set S. While
this process is straightforward for the initial cutting plane, it be-
comes increasingly complex after several recursive decompositions
as we need to manage intersections between an arbitrary number
of spheres and planes in three dimensions.

#𝐶 = 1 #𝐶 = 2 #𝐶 = 7

Fig. 15. Bounding volumes using an increasing number cu�ing plane #� .

We tackle this problem by considering each cutting plane as an
in�nite sphere added to the sphere set (see Figure 11). Indeed, a
cutting plane carries the same type of information as any sphere of
S, as it marks a region of space as empty. By converting each cutting
plane Π into an in�nite sphere (∞ and adding it to the sphere set
S, we maintain the same context as the Sphere Carving method
and thus gain the same advantages: the convex hull created by the
trilateration of this extended sphere set bounds a portion of the
shape, formally:

� ()̃ (S ∪ (∞)) ⊃ O ∩ Π

We replace the cutting plane Π as a large sphere (we set its radius
to the size ofV0 in our implementation) that is tangent to Π, with
its center located on a line perpendicular to the plane and passing
through the centroid of the point set L or R. This choice does not
a�ect the bounding property of the resulting hull, as illustrated in
Figure 15. Using large spheres instead of in�nite spheres or planes
will create slight overlaps between the di�erent convex hulls, but
will never break the bounding guarantee. Furthermore, it also allows
us to utilize the intersection calculations from the Sphere Carving
algorithm.

6 RESULTS

We implemented Sphere Carving (Section 4) in GLSL using Com-
pute Shaders and Approximate Convex Decomposition (Section 5)
in C++. A simple code is available at link will be added upon ac-

ceptance and a detailed breakdown of a parallel implementation is
presented in Appendix A.3. All the models shown throughout this
paper (Figure 1, 9, 10, 12, 15, 16, 17, 22) were rendered using Sphere

Tracing [Hart 1996] in a standalone application (see accompanying
video). Experiments were performed on a laptop computer equipped
with an Intel Core i7-12800H clocked at 2.4GHzwith 32GB of RAM,
and NVIDIA GeForce RTX 3080 Ti Laptop GPU.

1-Lipschitz Conservative BlobTreeNeural

Fig. 16. Bounding volumes for various types of implicit surfaces (neural
bunny from Coi�ier et al. [2024], molecule inspired from Galin et al. [2020]).

Sphere Carving is compatible with a wide range of implicit sur-
faces, including neural 1-Lipschitz [Coi�er and Béthune 2024],
Blob [Galin and Akkouche 1996] and BlobTree [Wyvill et al. 1999]
models, conservative, Lipschitz, or exact signed distance �eld (Fig-
ure 16). We tested the algorithm on a set of 18 shapes from a pub-
lic dataset [Takikawa et al. 2021] or made by professional artists,
that we classi�ed in three categories: almost exact, conservative,
and overly conservative (also referred to as bad). The algorithm
converges to a bounding volume provided that the function 5 is
conservative. Figure 21 illustrates how an ill-de�ned signed distance
function leads to a slower convergence of Sphere Carving. Overly
conservative functions typically require a higher number of itera-
tions to converge. Figure 17 shows the convex bounding volumes
computed for various models, and Figures 15 and 19 show exam-
ples of approximate convex decomposition. Figure 17 illustrates the
robustness of our method on a large set of shapes and topologies:
high-genus (car, ship), �at areas (wings of the Tie Fighter, see also
Figure 10), and multiple disconnected components (camera).

6.1 Performance

Speed. Sphere Carving performs best for exact or almost exact
signed distance �elds, where only one iteration is required to get a
close bound to the surface. Table 1 reports various Sphere Carving
statistics to obtain a single bound. The best performances are ob-
tained with almost exact distance �elds using a maximum iteration
count of 1 and allowing up to 2000 spheres. In contrast, the con-
servative and overly conservative signed distance function require
more iterations to get a precise volume, with a maximum iteration
count set to 30 and the maximum sphere count to 30000. Other
nearly exact �elds share the same statistics and are not included in
this table, such as Car, House, Raccoon, Mike, Tentacles, and House
models, all referenced in Figure 17).

As the distance function becomes more conservative, more itera-
tions =8 may be required to get a bound close to the surface of the
object (see conservative and bad in Table 1). In all cases, constructing
a single bounding volume is completed in a few seconds at most,
and in less than 1ms with less than 100 function evaluations for
exact or almost exact signed distance function, making it suitable for
real-time application (see accompanying video). This e�ciency is
crucial when evaluating 5 becomes computationally intensive, such

Fig. 17. Bounding volumes obtained by Sphere Carving on a variety of quasi-exact and conservative signed distance function.

Table 1. Statistics of Sphere Carving to get a single bound, with =8 the
number of iterations, #S the number of spheres, #P the number of points,
#5 the number of field function calls, and C the time in ms.

T
yp

e

Scene (Figure) =8
Complexity Performance

#S #P #5 C

B
ad

Dalek (17) 17 30778 19568 50843 2160

Ship (12) 15 35450 21244 43213 4418

C
on

se
rv
at
iv
e

Splash (17) 5 1790 3370 2369 6

Teapot (17) 7 2276 2883 2713 18

TieFighter (17) 10 2112 3686 4993 13

Snail (10) 13 1285 1592 3013 15

Dinosaur (9) 9 2219 3447 5304 24

Camera (17) 13 256 562 906 6

Glass (17) 6 2864 3176 2880 21

Pump mount (17) 6 3318 5505 3539 8

≈
E
xa
ct

Temple (10)

1 42 80 42 < 1

Car (17)

Console (16)

Pipe (17)

Joint (17)

Fountain (17)

Vase (17)

as in complex construction trees that combine thousands of intricate
primitives using blending, Boolean and deformation operators – a
typical case in implicit modeling.

100
0 2 4 6 8 10 12

Evolution of the volume ratio (𝑛)/ ∞

102
104
106

Ship

Dalek

8

8

7

7

6

5

Snail

Teapot5

6
4

3

Dinosaur

TieFighter

2

1

Temple

Sphere

4

3

1

2

Fig. 18. Evolution of the volume ratio between the Sphere Carving result
and the real convex hull of mO, for several objects (iterations in abscissa).
The quality of 5 can be identified through the curves: the convergence is
slower for very underestimated distances (in red), while a single iteration is
enough for quasi-exact functions (in green).

The most computationally intensive part is the computation of
all possible sphere intersections within the set of spheres S, with a
complexity of$ (=3), where= represents the number of spheres. This
may challenge the algorithm when dealing with overly conservative
signed distance �elds such as the ship model in Table 1 (see also
Figure 21). In such cases, Sphere Carving requires more iterations to
converge (see Figure 18), which often involves processing a large
set of spheres S: at each iteration. This case is similar to slow
Sphere Tracing, which requires more steps for overly conservative
functions. Still, our GPU implementation performs well for most
models.

The approximate convex decomposition (see Section 5.2) requires
a �nal point set P close to the shape surface, which in turn requires
more iterations. Table 2 reports the statistics for an approximate
convex decomposition. We purposely performed more iterations to
get dense point clouds around the shapes enabling the decomposi-
tion into multiple bounds. The decomposition process usually takes
a few seconds to complete. This is mainly due to the cutting plane
selection step, which requires multiple convex hull computations to

Table 2. Statistics for approximate convex decomposition: =8 denotes the
number of iterations, #2 , #S and #P the number of convex parts, spheres,
and points, #5 the number of field function calls, C the processing time (in
ms), and C3 the approximate convex decomposition time (in s).

Scene (Figure) =8 #2
Complexity Performance

#S #P #5 C C3

House (17) 10 4 548 963 1593 7 2.7

Raccoon (17) 20 4 1347 2875 4626 20 9.7

Mike (17) 13 5 601 1303 2026 7 8.1

Bird (17) 7 5 299 685 967 4 5.1

Tentacles (17) 14 8 806 1795 2830 10 12.0

Candlestick (17) 6 3 2212 4411 3646 9 25.7

Amphora (17) 7 3 2331 4750 3353 29 49.9

ensure that a good cutting plane is chosen. This step draws inspi-
ration from approximate convex decomposition methods typically
applied tomeshes [Thul et al. 2018] and could be easily replaced with
more e�cient or faster methods if necessary. Nonetheless, results
demonstrate that the point set P is accurate enough to bound the
input object by a union of multiple convex polyhedra or ellipsoids
(see Figures 15, 22 and 19).

#𝐶 = 2 #𝐶 = 2 #𝐶 = 8

#𝐶 = 3#𝐶 = 4#𝐶 = 1
Fig. 19. Bounding volumes obtained using the approximate convex decom-
position with a varying number of cu�ing planes #� .

Memory. A key feature of the method is the compact representa-
tion of the bounding volume (either a set of convex polyhedra or a
union of ellipsoids) as a signed distance �eld 3 (p,B) and embedded
in the de�nition of 5̃ . The simpli�cation scheme (see Section 5.2)
allows the bounding volume representation to remain compact in
memory and be implemented on graphics hardware for sphere trac-
ing applications. This approach is bene�cial compared to external
acceleration structures, such as grids or octrees, which tend to have
a larger memory footprint and require additional code for query-
ing the acceleration structure. Another advantage of embedding
the bounding volume in the function de�nition is that we remain
compatible with other speci�c acceleration techniques dedicated
to speci�c algorithms, such as Sphere Tracing [Bálint and Valasek
2018; Keinert et al. 2014] or Segment Tracing [Galin et al. 2020], or

even polygonization including early continuation methods [Wyvill
et al. 1986] or grid-based approaches [Lorensen and Cline 1987], to
recently published methods [Sellán et al. 2024].

Performance gain. The augmented �eld function 5̃ enables faster
queries in various applications, including sphere tracing, polygo-
nization, and simulation. Notably, queries located outside the bound-
ing volume do not need to compute the computationally intensive
function 5 of the object. In an experiment, we computed ∼1 mil-
lion queries within a box surrounding the object. We measured the
query costs with and without using a bounding volume. The re-
sults indicate that the augmented 5̃ performs 3.3 to 4.9 times faster
on average than the base �eld function in our set of test shapes,
depending on the box size (from ×1.5 to ×2 larger than the object).

Sphere-tracing of 𝑓 Sphere-tracing of ሚ𝑓

Slow

Fast

Fig. 20. Per-pixel cost comparison between sphere tracing of the original
function 5 (le�), and the augmented function 5̃ that uses the convex hull
as a proxy (right). Artifacts on the right are due to GPU memory access
pa�ern inconsistencies.

Figure 20 shows the cost of 5 against its augmented counterpart
5̃ in a Sphere Tracing scenario. Using a convex bound around the
object can provide up to a 50% speedup.

Quasi-exact Conservative Very conservative

4

1

9

Fig. 21. Convex volumes for di�erent qualities of 5 ; as shown by the curves
in Figure 18, more conservative functions require more iterations (reported
in the circles).

6.2 Other bounding volumes

Our method is general and can be used to generate multiple types
of bounding volumes. Oriented bounding boxes and k-dops can be
directly derived from the set of point P. We can adapt the algorithm
to convex polyhedra de�ned as intersections of slabs, and to k-dops
(Figure 22). Recall that slabs are formed by the intersection of two
half-spaces that extend in opposite directions. k-dops are created
by intersecting half-spaces, using a subset of directions [Klosowski
et al. 1998]. Utilizing slabs and k-dops signi�cantly speeds up the
evaluation of the signed distance function ℎ̃, by dividing the number
of scalar products by two.

Bounding ellipsoids can be generated by replacing the convex
hull generation step (Section 5.1) from the set of points P with a
minimum-volume enclosing ellipsoid generation. Figure 22 shows
several decompositions produced with the same set of points P,
along with a single bounding volume as an inset.

Bounding boxes k-DOPs EllipsoidsConvex

Fig. 22. Di�erent types of bounding volumes: planes selected by :-means,
oriented bounding boxes, :-dops (here : = 18) and ellipsoids.

Let E denote the ellipsoid of center c,R its rotationmatrix de�ning
its axes, D a diagonal matrix, and 0 < 1 < 2 the lengths of the axes.
The following function de�nes a 1-Lipschitz (thus conservative)
signed distance function:

3 (p, E) = 0
(
∥A (p − c)∥ − 1

)
A = D(1/0, 1/1, 1/2) RC

Compared to convex polyhedra, ellipsoids may have a more conser-
vative distance function depending on the relative axis lengths but
are more compact in memory and computationally more e�cient.
The evaluation of the signed distance function requires only ≈ 4

scalar products and one square root, compared to = scalar products
for a =-face convex polyhedron.

6.3 Comparison with other methods

Computing the bounding volume of a signed distance function is
challenging because of the implicit characterization of the surface.
An important feature of Sphere Carving is its ability to compute
convex bounding volumes using a dozen to a few thousand �eld
function queries at most.

𝑉0

#𝑓 = 16 #𝑓 = 49

𝜕O

Fig. 23. Comparison of signed distance function evaluations for octree and
Sphere Carving, in 2D, for a quasi-exact distance.

A �rst alternative strategy is to decompose space into a grid,
potentially covering a very large domain around the shape, and
compute the set of voxels straddling the surface and use them to
extract the convex hull, which requires the costly evaluation of 5
at the vertices of the grid. Moreover, this approach does not pro-
vide any bounding guarantees. A variant is to rely on an adaptive

decomposition of space using octrees [Hart 1996]. Starting from a
large cube instead of the initial carving sphereV0, we recursively
subdivide the cube if the value 5 (c) at its center c is greater than
the length of the diagonal of the cube, which guarantees that mO
does not straddle it (see Figure 23). The convex hull � is computed
from the eight vertices of the detected straddling cubes.

We conducted some experiments and compared the results with
Sphere Carving (Figure 24). The octree typically requires signi�-
cantly more evaluations of 5 to accurately obtain a good convex
hull. For very conservative functions, however, this gain may be
o�set by the cost of intersecting many spheres. The �nal point set
generated by the octree may have numerous coplanar points, par-
ticularly when the signed distance function 5 de�nes �at surface
parts. This abundance of coplanar points can slow the computation
of the convex hull, as these points may all contribute to the convex
envelope. The snail shape is the only instance where the octree
decomposition converges in fewer iterations compared to Sphere

Carving. This may be attributed to signi�cant anisotropy in the
values of 5 , which results in many small spheres gradually moving
towards the shape.

Vase

Temple

Snail

Arlo

Ship

1

2

3

4

5

SC

Octree
100
102
104

102 103 1041 2

3

4

Evolution of the volume ratio H/H∞
5

Fig. 24. Comparison of convex volume convergence between the la�ice-free
Sphere Carving and an octree-based approach. The graph reports the ratio
H/H∞ as a function of the number of evaluation of 5 .

Interval and a�ne arithmetic are another way of computing
bounds or excluding parts of the function expression in space [Du�
1992]. They have been successfully applied to the ray tracing of
implicit surfaces [Keeter 2020; Knoll et al. 2009]. This family of
methods relies on well-de�ned interval queries implemented for
each primitive and operator of the implicit function. It is therefore
less general than our method and cannot process black-box signed
distance �elds.

Recently, neural approaches have been employed to compute tight
bounding volumes around complex objects [Liu et al. 2024]. While
this methodmay be applied to signed distance �eld, it requires a long
training time per shape (up to one hour) and does not provide strict
guarantees regarding false negatives. In contrast, Sphere Carving
can process a variety of implicit surface representations, terminates
in a few seconds, and provides strict bounding guarantees.

6.4 Limitations

Sphere Carving involves maintaining a set of spheres from which we
compute all possible intersection points. The size of this sphere set
can increase rapidly with each iteration. Since we need to calculate
the complete set of intersections among all spheres, this results in a
computational complexity of O(=3), which can become computa-
tionally intensive. This issue typically arises in cases of conservative

signed distance �elds that signi�cantly underestimate the distance
to the object’s surface. Consequently,the Sphere Carving algorithm
may require more iterations and more spheres to converge (see
Figure 21).

In our experiments, we observed that the computation time rose
to several seconds for the ship and dalek models (see Table 1). To
alleviate this issue, the trilateration of all spheres could be optimized
by using accelerating data structures adapted to the sphere set. We
plan to explore these possibilities in future work.
Overly conservative functions may also require a larger initial

volumeV0, or a denser sampling of it to satisfy the initialization
constraint (see Section 4.1). This is however not a problem for quasi-
exact signed distance �eld. Finally, the bounding guarantee does
not hold if the signed distance �eld overestimates the distance to
the object. The algorithm does not break and still progress toward
the shape, but the result is no longer guaranteed to be bounding.
This behavior is similar to Sphere Tracing, where a ray may miss
the shape due to overestimated distances.

7 CONCLUSION

Sphere Carving is an e�cient method for computing bounding vol-
umes agnostic of the representation of the signed distance function.
This simple technique, straightforward to implement, generates
point sets around the surface of an implicitly de�ned object. These
point sets can be further processed to create a set of convex poly-
hedra or other types of bounding volumes, such as ellipsoids. Ad-
ditionally, these bounding volumes can be used to de�ne a variant
of the signed distance function that provides speedup for function
queries.

One advantage of our approach is that it is agnostic to the implicit
surface representation; however, this characteristic also serves as a
limitation since it does not take advantage of the construction model.
Adapting to speci�c models and utilizing the power of commonly
used construction trees or graphs may further reduce the cost of
evaluating the signed distance function.

ACKNOWLEDGMENTS

We thank Luc Chamerlat, Inigo Quilez, and Nikie Monteleone for
authoring some models used in this paper.

REFERENCES
Melike Aydinlilar and Cédric Zanni. 2023. Forward inclusion functions for ray-tracing

implicit surfaces. Computers & Graphics 114 (2023), 190–200.
Róbert Bán and Gábor Valasek. 2023. Automatic Step Size Relaxation in Sphere Tracing.

In Eurographics 2023 - Short Papers, Vahid Babaei and Melina Skouras (Eds.). The
Eurographics Association.

James F. Blinn. 1982. A Generalization of Algebraic Surface Drawing. ACM Trans.
Graph. 1, 3 (1982), 235–256.

Jules Bloomenthal and Brian Wyvill (Eds.). 1997. Introduction to Implicit Surfaces.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Csaba Bálint and Gábor Valasek. 2018. Accelerating Sphere Tracing. In EG 2018 - Short
Papers, Olga Diamanti and Amir Vaxman (Eds.). The Eurographics Association.

Guillaume Coi�er and Louis Béthune. 2024. 1-Lipschitz Neural Distance Fields. Com-
puter Graphics Forum 43, 5 (2024), e15128.

B. R. de Araújo, Daniel S. Lopes, Pauline Jepp, Joaquim A. Jorge, and Brian Wyvill. 2015.
A Survey on Implicit Surface Polygonization. ACM Computing Survey 47, 4, Article
60 (2015), 39 pages.

Tom Du�. 1992. Interval Arithmetic Recursive Subdivision for Implicit Functions and
Constructive Solid Geometry. SIGGRAPH Computer Graphics 26, 2 (1992), 131–138.

Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. 2000. Adap-
tively Sampled Distance Fields: A General Representation of Shape for Computer

Graphics. In Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH’00). 249–254.

Eric Galin and Samir Akkouche. 1996. Blob Metamorphosis based on Minkowski Sums.
Computer Graphics Forum 15, 3 (1996), 143–152.

Eric Galin, Eric Guérin, Axel Paris, and Adrien Peytavie. 2020. Segment Tracing Using
Local Lipschitz Bounds. Computer Graphics Forum 39, 2 (2020), 545–554.

Olivier Gourmel, Anthony Pajot, Mathias Paulin, Loïc Barthe, and Pierre Poulin. 2010.
Fitted BVH for Fast Raytracing of Metaballs. Computer Graphics Forum 29, 2 (2010),
281–288.

John C. Hart. 1996. Sphere Tracing: A Geometric Method for the Antialiased Ray
Tracing of Implicit Surfaces. The Visual Computer 12, 10 (1996), 527–545.

D. Kalra and A. H. Barr. 1989. Guaranteed Ray Intersections with Implicit Surfaces.
SIGGRAPH Computer Graphics (1989).

Matthew J. Keeter. 2020. Massively Parallel Rendering of Complex Closed-Form Implicit
Surfaces. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 39, 4 (2020),
141:1–141:10.

Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger.
2014. Enhanced Sphere Tracing. In Proceedings of Smart Tools & Apps for Graphics.
Eurographics Association, Cagliari, Italy.

James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral, and Karel Zikan.
1998. E�cient Collision Detection Using Bounding Volume Hierarchies of k-DOPs.
IEEE Transactions on Visualization and Computer Graphics 4, 1 (1998), 21—-36.

A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen. 2009. Fast Ray
Tracing of Arbitrary Implicit Surfaces with Interval and A�ne Arithmetic. Computer
Graphics Forum 28, 1 (2009), 26–40.

Stephanie Wenxin Liu, Michael Fischer, Paul D. Yoo, and Tobias Ritschel. 2024. Neural
Bounding. In ACM SIGGRAPH 2024 Conference Papers. Association for Computing
Machinery, Article 98, 10 pages.

William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (1987), 163–169.

Ken Museth, David Breen, RossWhitaker, and Alan Barr. 2002. Level Set Surface Editing
Operators. ACM Transactions on Graphics 21, 3 (2002), 330–338.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir Savchenko. 1995. Func-
tion representation in geometric modeling: concepts, implementation and applica-
tions. The Visual Computer 11, 8 (1995), 429–446.

Eduard Pujol and Antonio Chica. 2023. Adaptive approximation of signed distance
�elds through piecewise continuous interpolation. Computers and Graphics 114
(2023), 337–346.

Marzia Riso, Élie Michel, Axel Paris, Valentin Deschaintre, Mathieu Gaillard, and
Fabio Pellacini. 2024. Direct Manipulation of Procedural Implicit Surfaces. ACM
Transaction on Graphics (2024).

Ryan Schmidt, Brian Wyvill, and Eric Galin. 2005. Interactive implicit modeling with
hierarchical spatial caching. In International Conference on Shape Modeling and
Applications. 104–113.

Silvia Sellán, Christopher Batty, and Oded Stein. 2023. Reach For the Spheres: Tangency-
aware surface reconstruction of SDFs. In SIGGRAPH Asia 2023 Conference Papers.
Article 73, 11 pages.

Silvia Sellán, Yingying Ren, Christopher Batty, and Oded Stein. 2024. Reach For the
Arcs: Reconstructing Surfaces from SDFs via Tangent Points. In SIGGRAPH 2024
Conference Papers. Article 25, 11 pages.

Nicholas Sharp and Alec Jacobson. 2022. Spelunking the deep: guaranteed queries on
general neural implicit surfaces via range analysis. ACM Transactions on Graphics
41, 4, Article 107 (2022), 16 pages.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. (2021).

Daniel Thul, L’ubor Ladický, Sohyeon Jeong, and Marc Pollefeys. 2018. Approximate
convex decomposition and transfer for animated meshes. ACM Transactions on
Graphics 37, 6, Article 226 (2018), 10 pages.

Brian Wyvill, Andrew Guy, and Eric Galin. 1999. Extending the CSG Tree - Warping,
Blending, and Boolean Operations in an Implicit SurfaceModeling System. Computer
Graphics Forum 18, 2 (1999), 149–158.

Geo�Wyvill, Craig McPheeters, and BrianWyvill. 1986. Data Structure for Soft Objects.
The Visual Computer 2 (1986), 227–234.

Cédric Zanni. 2024. Synchronized Tracing of Primitive-based Implicit Volumes. ACM
Transactions on Graphics 44, 1, Article 6 (2024), 15 pages.

A APPENDIX

A.1 Triangle coverage test

The sphere carving algorithm relies on the property that the sam-
pling of the initial volume V0 is dense enough to create sphere
intersections (see Section 4.1).Therefore, we need to check whether
a triangle) is completely outside of O:

∀p ∈), 5 (p) > 0

The evaluation of 5 at the vertices of the triangle) with vertices
v8 , 8 ∈ {0, 1, 2} yields three empty spheres (8 (v8 , 5 (v8)). We need
to verify whether those three spheres cover) completely. This is
equivalent to checking that no point of) is lying outside of the
circles centered at its vertices:

∀p ∈), ∃ 8 ∈ {0, 1, 2}, ∥p − v8 ∥ < 5 (v8)

We designed a test based on the following observation: only two
cases arise where the triangle is not covered: 1) one circle is disjoint
from the other two, and 2) an intersection point of two circles is lying
inside) and outside of the third circle. If any of those two conditions
is true, the triangle is not entirely covered by spheres, and the test
fails. Figure 25 illustrates the two cases. The code implementing this
algorithm is available at link will be added upon acceptance.

Covered triangle Unsafe triangle

𝐯1
𝐯0 𝐯2

𝐯1
𝐯0 𝐯2

Fig. 25. The triangle on the le� is completely covered by the three circles
(8 (v8 , 5 (v8)) , whereas the triangle on the right doesn’t satisfy the coverage
test: 2 intersection points are lying inside) and outside the third circle.

A.2 Sphere trilateration

We detail here the computation of the intersections of three spheres
(8 (p8 , A8), 8 ∈ {0, 1, 2}. Finding intersections is equivalent to solving
the following system for p:

(p8 − p)
2
= A28 ∀8 ∈ {0, 1, 2} (1)

We consider a local frame (eG , e~, eI), aligned with the plane
passing through the centers p8 :

eI =
(p1 − p0) × (p2 − p0)

∥(p1 − p0) × (p2 − p0)∥

eG =
p1 − p0

∥p1 − p0∥

e~ = eI × eG

Let 0 = | |p1 − p0 | |, 1 = (p2 − p0) · eG , and 2 = (p2 − p0) · e~ , the
equation 1 can be rewritten as:

G2 + ~2 + I2 = A20

(G − 0)2 + ~2 + I2 = A21

(G − 1)2 + (~ − 2)2 + I2 = A22

Solving the system yields:

G =
A20 − A

2
1 + 0

2

20

~ =
A21 − A

2
2 − (G − 0)

2 + (G − 1)2 + 22

22

Then, we can compute I, provided that the term under the radical
is positive (meaning that the intersection exists):

I =

√
A20 − G

2 − ~2

Finally, we return to the original frame:

p = p0 + G .eG + ~.e~ ± I.eI

A.3 Parallel Sphere Carving algorithm

We detail here a parallel-friendly implementation for a single Sphere
Carving iteration. As shown in Algorithm 2, it requires four very
simple kernels.

Algorithm 2: Parallel implementation for a single iteration.

Input :Conservative signed distance �eld 5 , current array of
empty spheres S.

Result: Updated array of empty spheres S, array of points P
whose convex hull bounds the surface de�ned by 5 .

1 ?08AB ← ∅; // array of sphere index pairs

2 parallel for (0 ∈ S do

3 for (1 ∈ S with 1 > 0 do

4 if (0 ∩ (1 ≠ ∅ then

5 ?08AB ← ?08AB ∪ (0, 1);

6 P,P′ ← ∅; // arrays of 3D points

7 parallel for (0, 1) ∈ ?08AB do

8 for (2 ∈ S with 2 > 1 do

9 P′ ← P′ ∪ intersections((0, (1 , (2);

10 parallel for p ∈ P′ do

11 for (∈ S do

12 if p ∈ interior(() then end thread;

13 P ← P ∪ p;

14 parallel for p ∈ P do

15 S ← S ∪ sphere(p, 5 (p));

16 return S,P;

To compute the intersection points for all ordered triplets of
spheres, we �rst gather all ordered pairs of spheres that intersect
using one kernel, and then test those pairs against all the sphere
set with another kernel. To �lter out an intersection point that lies
on the interior of the sphere set volume, we simply iterate over
all spheres and discard the point if for any sphere, its distance to
the sphere center is less than the sphere radius, accounting for
�oating-point precision. The sphere set is augmented by evaluating
in parallel the signed distance �eld at every point that was not
discarded. All sets are implemented as arrays that are assumed to
be pre-allocated with su�cient memory; pushing values in parallel
onto an array requires one atomic counter per array.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview and notations
	3.1 Fundamentals concepts
	3.2 Overview

	4 Sphere Carving
	4.1 Initialization
	4.2 Iteration
	4.3 Termination criterion

	5 Bounding shapes
	5.1 Implicit convex hulls
	5.2 Approximate Convex Decomposition

	6 Results
	6.1 Performance
	6.2 Other bounding volumes
	6.3 Comparison with other methods
	6.4 Limitations

	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Triangle coverage test
	A.2 Sphere trilateration
	A.3 Parallel Sphere Carving algorithm

